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In this paper, the consensus of second-order nonlinear self-driving vehicle
convoys (SDVCs) is studied. We assume that each self-driving vehicle
(SDV) communicates only with one front and one rear SDVs. Each SDV’s
nonlinear dynamics consisting of the rolling resistance and the air drag
force is a function of SDV’s speed and is investigated in SDVC’s modeling
and consensus design. Since the speed is bounded, all vehicles’
nonlinearities are also bounded. Due to engine saturation of each SDV, the
control input is limited. We involve this limitation by introducing the
arctan(.) function to control protocol. The inter-SDV’s distances are
assumed to be constant during motion. The distance tracking error
associated with each SDV is defined as distance between it and the leading
SDV. The error dynamics of the proposed SDVC is derived after applying
the consensus law to each SDV. To prove the internal stability, the
Lyapunov theorem is employed. We will prove that under this consensus
algorithm, the SDVC will be internal stable. To validate the effectiveness
of this method, a SDVC comprising a leading and 6 following SDVs will
be studied. It will be verified that under the proposed consensus law, all
the SDVs reach a unique consensus.

1.Introduction

In recent decades, we have perceived
significant progress in controlling the motion of
self-driving vehicles (SDVs) [1-3]. Self-driving
vehicle convoys (SDVCs) have played a very
immense role in creating and making intelligent
traffic flows [4, 5]. The consensus as an important
problem of SDVCs is investigated by many
researchers [6-8]. We say that a SDVC achieves
consensus if all SDVs reach a same speed and
acceleration with a safe constant distance
between consecutive SDVs [9].
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The distance between SDVs can be fixed or
variable. If constant, the length of the SDVC
always remains constant, but if this distance is a
function of the convoy speed, the length increases
during acceleration and shortens during braking.
If the interval between SDVs is always constant,
the traffic capacity will be higher than when it is
time-varying, although its practical
implementation is more difficult [10, 11].

If the consensus has a unique solution, the
SDVC is called internally stable. Moreover, if the
distance error range does not increase among the
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SDVs, the SDVC is called string stable [12].
According to how information is exchanged
between SDVs, there are several communication
structures in SDVCs. Directed structures such as
centralized and decentralized predecessor
following [13, 14], bi-directional [15] and multi-
SDVs following [16].

Nonlinear dynamics and engine saturation have
significant effects on stability of SDVCs. Due to
several effects such as rolling resistance between
tires and the road, power transmission structure
and air resistant force the nonlinearities appear
frequently in upper level dynamics of each SDV
[17]. Nonlinearities may cause internal instability
of SDVCs. Due to the limited speed of each SDV,
all these nonlinear terms will be bounded. On the
other hand, due to structural limitations of engine,
the controller will be bounded. Few works have
been carried out on internal stability of SDVCs
with dynamical nonlinearities. A nonlinear
consensus based on parameter identification is
proposed in [18] for different topologies. A
robust backstepping method to compensate the
nonlinear dynamics is presented in [17]. Optimal
consensus design in the presence of actuator
delay and nonlinearities is performed in [19]. A
nonlinear hierarchical model predictive approach
to achieve the consensus and collision prevention
of SDVCs is introduced in [20]. Effect of actuator
fault on the stability of SDVCs is studied in [9]
and [21]. The internal stability under input
saturation, parameter uncertainty and time-
varying distances is investigated in [22].
Adaptive robust finite-time consensus with
unknown saturation and bound disturbance is
presented in [23]. Neural network-based
estimation design of uncertain SDVCs under

SDV m SDV i+1

input saturation and nonlinear uncertainties is
studied in [24]. The comfort and safety problems
in the presence of input saturation, time delay and
time-varying distances are proposed in [10]. In
[25], the effects of actuator fault and saturation on
convoy motion on uneven surfaces are
investigated.

In the previous works, the consensus problem
of second-order bi-directional (BD) decentralized
SDVCs in the presence of nonlinearity and
engine saturation has not been investigated.
Therefore, we will solve the consensus problem
of BD decentralized nonlinear second-order
SDVCs in the presence of engine saturation. The
motion of the leading SDV is known and all
following SDVs’ motion is described by second-
order nonlinear differential models. The
nonlinearities are caused by the rolling resistance
and air forces. Therefore, all these terms are
bounded by an arctan(.) function. Due to engine
saturation, the control input of each SDV is
limited. This limitation is modeled by the
arctan(.) in the consensus law. All distances
between SDVs are designed to be constant. The
distance error of each following SDV with
respect to leading SDV is defined and the
dynamics of the closed-loop of the SDVC is
obtained according to error dynamics. To obtain
the consensus of the whole system, a Lyapunov
function is defined. It will be proved that under
the proposed consensus law, the BD
decentralized SDVC with engine saturation will
be internal stable. To verify the effectiveness of
this method, numerical simulations are provided.

We arrange the remain of this article as below.
In part 2, the problem is introduced and useful
mathematical tools are presented. In part 3, the

SDV i SDV 1 Leader

CR)— - @Eh-

S > AT

i+l Ky i

Figure 1. A SDVC with bi-directional topology
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consensus design procedure is presented. Part 4
provides the numerical studies and part 5
concludes the results and offers future guidelines.

1. System definition

Consider a SDVC of m SDVs and a leader with
bi-directional topology as shown in figure 1.
Leader motion is formulated by:

Po ®= Oo ®
qo(t) = fo ®

where p,(t), q,(t) and f,(t) are position, speed
and the known function associated with the
leader. Each of the SDV is formulated according
to a second-order nonlinear equation as follows:

fo(® =41 = { @

B (t) = (e +y50) I m, _a3,iqi2 Im+u /m,
- P (t) =G (t)
Gi(t) = ~(ay; +ay,G,) I M, — 07 1 my +u; /m,
O]
where o, a,; are rolling resistance coefficients,

m, is the mass, u; is consensus protocol and «,,

is a constant containing air drag coefficient and
the geometry of the i-th SDV. By defining that

£ (0, t) = (e + @0 + 5,07 ) and u =u; /m,
(2) will be rewritten as
{ P ®= 0 ®

qi(t) = fi (t’qi)+ui
The consensus of the SDVC (1) and (3) is
achieved if we have:

lim|p, ,(t) — p, (1) =s" 1., =0

lim|a,_, (t) -, (1)) =0

©)

,i=12,..m (4)

where s” is the safe distance and |, is the k-th
SDV length, respectively.

Lemma 1. mean value theorem [26]. Suppose
that h:[t,t,] > R isacontinuous function. There

exists a constant t, <t” <t, such as:

J o)z =n) () 5)
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Assumption 1. In practical implementations, the
velocity of each SDV is bounded. Therefore, we
can assume that

|16 < arctan(q,) ©)

where ¢; is a positive constant.

2. Consensus protocol design

To achieve the consensus in the presence of
engine’s saturation, the below consensus law is
designed for each SDV.

u, =arctan( p,_,; )+arctan(p, ., ) - arctan(q;)  (7)
where ¢; is a positive gain and:

Pii = Piss — B -5 —Ii_1

. ®)
pi,i+1 =Py — P+ +Ii
From (7), we can infer that:
1
0,0 < ;{ngaij ©

By applying (7) to (3), the i-th SDV’s closed-loop
dynamics is obtained as below:

P t)= G (t)
6,(t) = fi(t.q) +arctan(p, ;) + (10)
+arctan(p, ., ) - arctan(g;)

We define that:

& =arctan ( Pi_i )+arCtan ( pi,i+1)a§ = [51: S G ]T

a=[ay, 0] P =[Pr Pareos P 10 =[0Gy G |

g =arctan(q,), g =[G, Ty Ty | F = [0 Fyree £ ]
Therefore, (10) is rewritten as:

{D(t) =q(t)
a) =&(t) —aq(t) +£(t)

Theorem 1 solves the consensus problem.

1)

Theorem 1. If the parameter ¢, satisfies the following

constraint, the SDVC described through (1) and (3)
under the consensus law (7) and assumption 1 will
obtain the consensus.

@ >G (12)
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Proof. To prove, the below Lyapunov function is
defined.

2

v f P arctan(r)dz + J'Op'“" arctan(r)d r) +

0

(13)

According to lemma 1, there exists a positive value
O<y <p,; satisfying that J'opk" arctan(z)dr =

arctan(z; ) p,; >0 where k can be i-1 or i+1.

Time differentiating of (13) along (11) yields

V =-23"q(arctan p,_,; +arctan p, ., )+ 2" g
= =
=-20'8+2q'q
=-2q" (q+oq-f)+2q'q
=-29"4-29'0q+2q'f+2q'q
=-29"aq+2q'f

= —2i ;g arctan g; + Zi q f (t.a)
i=1 i=1

(14)

According to assumption 1, one can write
ZQi fi (tvqi) < Zlqu fi (tvqi )| =
i=1 i i=1 (15)

= ¢,q arctan g

i=1

Therefore,
V< —Zi o,q; arctan g, + Zi C,q; arctan g

i=1 i=1 (16)

~ 2> (e —¢;) g, arctan g,
=1

and under (12), we have V <0.

According to (16), it is inferred that when V =0 we
have g, =0. From (10), we have

f,(t,q;) +arctan(p,,; ) +arctan(p,,,) =0 (17)
From assumption 1, we have |[f(t,q)[<
¢, |arctan(q;)| =0 and

fi(t,g)=0=

arctan(p, ;) +arctan(p,;.,)=0 (18)

4080  Automotive Science and Engineering (ASE)

So that,

( pi - s — |i71)arctan ( Pi_si ) =0,
(19)

M- 1D

I
AN

p;_, arctan ( Pisi ) =0

By subtracting the above equations and knowing that,
the network topology is bi-directional and therefore,
symmetric, we will have:

i Py arctan(p,,;)=0 (20)
i=1

We know that for 3=0: Sarctan($) >0. Therefore,
from (20) we infer that p, ,; =0 and according to (4)
the consensus is achieved and the proof is complete.

Remark 1. Theorem 1 is presented for bi-directional
network topology. This approach can be applied to all
symmetric networks.

In the following, we present a comparison for a case
where engine saturation is not considered. For this
case, the consensus protocol (7) is redesigned as
follows:

U =Py T Piia —Gq, (21)
where T, is a positive gain. In the case that the input
has no saturation, assumption 1 is modified as follows.
Assumption 2. Without considering saturation,
the nonlinear function f,(t,qg;) is bounded by

[fit.a)l << fa (22)

where ¢ is a positive constant. Under (21), (10)
will be as below:

{ pi (t) =0 (t)

23
q,(t) = fi(t,q)+ Pisi + Piia — GO @3)

.. - - - = — 7
By defining &= Pigi + pi,i+1'§ :[":11521--"5;11] and
C=diag(c,,c,,....C, ), (11) will be as follows

{p(t) =q(t)
a(t) = E(t) - Cq(t) +f(t)

Now, we modify theorem 1 as follows.

Theorem 2. The SDVC described through (1) and (3)
with unsaturated engine’s input, under the consensus
law (21) and assumption 2 will reach to consensus if
we have:

(24)
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C>c (25)

Proof. To prove the consensus problem, the following
Lyapunov function is defined.

1 m
V= E( Plyi+ Plas )"' quz (26)
i=1
Differentiating (26) yields

V= i[(qi—l _qi) Pi +(qi _qi+1) pi+1‘i:|+
" (27)

+22qiqi
i-1

By simplifying, (27) can be written in the following
compact form

V=-2q"¢+2q"q

=-29" (q+Cq-f)+297q (28)
= _ZqTéq + 2qTf = _ZiEiQiz + Zi qf (t, 0; )
i=1 i=1

According to assumption 2, one can write

2.6 fi(ta) < 2 lalfi(ta) < X cla? (29)
i=1 i=1 i=1

Consequently,

V< —zieiqf + 2ichf < —2i(q ~¢)g’ <0 (30)
i=1 i=1

i=1

According to (30), it is inferred that when V =0 we
have g, =0. From (23), we have

fit,g)+ Py +P;.=0 (31)

From assumption 2, we have |, (t,q;)|<c/|q,|=0. So
that

f(t,q)=0= Pisi+ B = 0 (32)
Accordingly,
Z PPy =0 (33)
i-1

The network topology is symmetric. Therefore,

Z piz—l,i = z Piyi Piy _Z PiiPi =
i1 i i1

N (34)
= 22 Pii Py = 0
i=1
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which indicates that p_;, i=12,..,m and the
consensus has a unique solution.

Remark 2. It should be noted that the coefficients
a,;, a,; and a,; are small. When they are divided by

m,, since the velocity is bounded, the resultant
nonlinear term f.(q;,t) will be smaller and therefore,
the assumptions (6) and (22) are reasonable.

3. Verification study

To verify the performance of the proposed consensus
algorithm in theorem 1, a convoy comprising 7 SDVs
is considered. We perform the simulation for two
braking and accelerating maneuvers. The constants are
supposed as:

s =5m, ¢, = 4.6,C, = 4.1, m =1400kg, m, =1500kg,
m, =1350kg, m, =1450kg, m, =1410kg, m, =1440kg,
I, =35m,1,=3.8m, 1, =4.2m,l, =4.4m, |, =4.3m,

I, =3.8m.

P (m)

0 10 20 30 40 50 60 70 80
Time(sec)
Figure 2: pi.1,i for the convoy: braking maneuver

Figures 2 and 5 illustrate the distance error of the
SDVC in braking and accelerating maneuvers,
respectively. As these figures show, all distance
tracking errors tend to zero specifying internal stability
in both acceleration and braking maneuvers. Figures 3
and 6 depict the velocity and figures 4 and 7 show the
acceleration of SDVs in braking and accelerating
maneuvers, respectively. Since the SDVC is internal
stable, the following SDVs track the speed and
acceleration of leading SDV.

Automotive Science and Engineering (ASE) 4081
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Figure 3: Speed of the convoy: braking maneuver
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Figure 4: Acceleration of the convoy: braking
maneuver
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Figure 5: pi.1i for the convoy: braking maneuver
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Figure 6: Speed of the convoy: accelerating
maneuver

Acceleration (m/s)
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0 10 20 30 40 50 60 70
Time(sec)
Figure 7: Acceleration of the convoy: accelerating
maneuver

4. Conclusions

The consensus of second-order nonlinear
SDVCs with bi-directional topology in the
presence of engine saturation was studied. Each
SDV’s nonlinear dynamics consisting of the
rolling resistance and the air drag force is a
function of SDV’s speed. Due to engine
saturation, the control input is limited. We
involved this limitation by introducing the
arctan(.) function to control protocol. The error
dynamics of the proposed SDVC was derived
after applying the consensus law to each SDV. To
prove the internal stability, the second Lyapunov
theorem was employed. It was shown that under
this consensus algorithm, the SDVC is internal
stable. To verify the effectiveness of this method,

80
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a SDVC comprising a leading and 6 following
SDVs was studied. The obtained results showed
the merits of the proposed method. For future
works, the engine time constant can be added to
the presented approach of this paper.
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