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As electric vehicles become more popular, we need to keep improving the
lithium-ion batteries that power them. Electrochemical impedance
spectroscopy (EIS) is used based on a discrete random binary sequence
(DRBS) to reduce excitation time in the low-frequency region and excite
the input of the battery. In this paper, voltage and current signals are
processed with wavelet transform for impedance evaluation. In using
discrete random binary wavelet transform, choosing the most optimal mother wavelet is crucial
sequence for impedance evaluation since different mother wavelets can produce
continuous wavelet transform different results. We aim to compare three types of continuous Morse
mother wavelet, continuous Morlet, and continuous lognormal wavelet,
which are among the most important mother wavelets, to determine the
best method for impedance evaluation. We used the dynamic time-
warping algorithm to quantify the difference between the initial values
obtained from standard laboratory equipment and the impedance
evaluation through three different continuous wavelets. Our proposed
method (lognormal wavelet) has the lowest difference (3.4086) from the
initial values compared to the Morlet (3.5504), and Morse (3.5457)
methods. As a result, our simulation shows that the lognormal wavelet
transform is the best method for impedance evaluation compared to Morlet
and Morse wavelets.
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Lithium-ion batteries are used in stationary,
automotive, and portable devices due to their
high energy and power density [1]. Changes
in the impedance spectrum patterns of a
battery analyzed through EIS, can provide
information on the internal health status of
major battery components (cathode, anode,
and electrolyte) and the remaining useful life
of the battery. In a recent paper by Zhang et
al. [2], extensive testing has shown that EIS
contains valuable information for detecting
degradation modes and evaluating the
remaining useful life of batteries. A small
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perturbation signal is applied to the battery
input to conduct EIS, and the resulting output
is measured. Mono-component sinusoidal
excitation is the conventional method
employed in EIS measurements [3]-[9].
Impedance  calculation  through  EIS
measurements is restricted to a finite number
of frequency values. Researchers have found
that the Nyquist curve provides valuable
information for accurately determining a
battery's real capacity, including its state of
charge and state of health, in the sub-
millihertz region [3], [9]. Therefore, the low-
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frequency region is critical for accurate
battery measurement, as it can Yyield
significant information about the battery's
behavior.

When using sinusoidal excitation in EIS, it is
customary to utilize 3 to 10 periods during the
measurement process [10]-[12]. At low
frequencies, the excitation process can
become extremely time-consuming. For
example, to obtain an EIS measurement at
1mHz using the recommended 3 to 10
periods, it would take between 3000 to 10000
seconds. Due to the extended stimulation
period, it is difficult to prevent environmental
drifts and disturbances from impacting the
measurement's  accuracy. In  addition,
achieving acceptable resolution in the
extremely low-frequency domain (<10mHz)
demands excessively lengthy measurement
periods. For efficient EIS analysis of a wide
frequency range, it is advised to employ
broadband excitation signals to enable high-
resolution measurements in a short period of
time [13]-[19]. Research findings indicate
that EIS was performed at a frequency no
lower than 100 mHz , and the excitation
process lasted approximately 90 seconds
[13], [15].

This paper uses discrete random binary
sequence excitation to evaluate the EIS of
lithium-ion batteries. It is possible to
represent a discrete random binary sequence
as a sum of numerous sinusoidal signals
arranged in a sequence of frequencies. Also,
in this paper, wavelet transform with 3 types
of mother wavelet is used to compare the
evaluated values and validate EIS.

The same method was used by Li et al. [20],
to estimate the Warburg-like impedance
spectrum, they all used the Morlet wavelet as
the mother wavelet. This method was also
used by George et al. [21], to estimate the
Warburg-like impedance spectrum, they all
used the Morse wavelet as the mother
wavelet. In this paper, we compared three
types of impedance spectrum estimation
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methods: Morlet wavelet, Morse wavelet,
and lognormal wavelet and introduced the
best method for estimating the impedance
spectrum. To validate the proposed EIS
method, we use a recent dataset [21], this data
IS used on a 3.04Ah811NMC —
Graphite 18650 cylindrical lithium-ion
battery of type LG18650HG2 (LG Chem).

Then, using the data of the same battery [21],
using DRBS stimulation, the Nyquist
characteristic was evaluated by processing
the voltage and current signals with Morlet
wavelet, Morse wavelet, and lognormal
wavelet transformations. The objective is to
demonstrate that the use of time-domain
signals can produce findings that match those
obtained using cutting-edge laboratory
equipment. Also, we evaluate the signal with
the best method by comparing the three
wavelets of Morlet, Morse, and lognormal.

2. Selection of the excitation signal

In order to conduct EIS on batteries using
conventional methods, a set of sine waves
with multi or mono components is employed
to obtain EIS values at various frequencies.
According to  system identification
principles, a noise signal with a wide
frequency range, like broadband, can excite
the dynamics of the system over a broad
frequency band. Such a signal should have
several properties: stationarity, bandwidth
encompassing the highest desired frequency,
and adequate power spectral density for a
reliable signal-to-noise ratio [22], [23].

A signal that fulfills the properties described
above can be produced using a random binary
sequence. This signal alternates between two
values, +a and —a, in a random pattern. The
frequency at which the value changes occur
is governed by a Poisson distribution. For
instance, if the intensity parameter of the
Poisson distribution is set to 10, the signal
will have a higher bandwidth and undergo
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more frequent changes than if the intensity
parameter were set to 5. Switches in discrete-
time signals are constrained to occur only at
discrete time points, which are determined by
the minimum time between two switches 4
and integer multiples of this value
kA(k € N°) [22]. A DRBS is a collection of
binary signals that are randomly distributed
over time. Its time domain behavior and
frequency content can be seen in FIGURE 1.
The goal of using a DRBS to excite a system
is to simultaneously excite the system with
multiple frequencies. The optimal approach
in an ideal situation is to use bandpass-
limited white noise. Equation (1) illustrates
the power spectral density ®%(w) [21].
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Figure 1: The DRBS generated with A = 3.3 seconds and
effective bandwidth of fg = 0.1Hzis represented by the
waveform in Figure (A). The power spectral density of this
sequence, obtained from a 300-second excitation, is
illustrated in Figure (B).
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The amplitude of the signal is represented by
the letter a, while the angular frequency is
denoted by w , and the minimum time
between two signal switches is called 1. The
power spectrum of the signal shows a
complete absence of frequencies at integer
multiples of 1/A. The useful and almost flat
part of the fz frequency band is determined
by the pass frequency, —3db, which is fz =
1/3A [26]. FIGURE 1 (b) displays the power
spectral density of a DRBS, which is a signal
that exhibits statistical similarities to white
noise [24].

3. Wavelet transform and selecting the
mother wavelet

There are different types of mother wavelets,
each of which has specific strengths and
weaknesses. According to the purpose of
impedance analysis, Complex mother
wavelets exclusively qualify for
consideration. The Morlet wavelet [27],
Morse wavelet [28], [29], and lognormal
wavelet [30] are the most remarkable mother
wavelets utilized in the continuous wavelet
transform. The time-frequency resolution is
the most prevalent criterion used to select the
mother wavelet [25], [26], [30]. It determines
the minimum time and frequency difference
needed to distinguish two mono-component
sinusoidal signals in a wavelet function [25].

4. Impedance evaluation using continuous
wavelet transform
Impedance can be determined using

Continuous Wavelet Transform (CWT) just
like how it is done with Fourier transform. By
performing CWT on voltage u(t) and
current i(t), one can obtain a series of
complex wavelet coefficients that help in
impedance analysis.

Wi(t, f) = R{Wi(t, )}
+ j3{Wi(t, )}

Wu(t, f) = R{Wu(t, )}
+j3{Wu(t, f)}

(2

Automotive Science and Engineering (ASE) 4043
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Wx(t, ) is used to indicate the wavelet of a
signal x(t), and it is a function of both time ¢t
and frequency f . The impedance is
determined by the ratio of the wavelet
coefficients, namely i(t) and u(t).

Wu(t, f)

2D =wien

Equation 3 computes the impedance with
respect to time and frequency, and it delivers
the magnitude and phase at any moment and
frequency point. Hence, it is viable to
monitor the alterations in the phase
component of impedance for every frequency
over time [21].

4.1. Initial reference measurements

FIGURE 2 shows the initial EIS
measurement curve as a black X, taken after
5 charge/discharge cycles. This curve was
measured at 68 frequency points between
1mHZ and 10KHZ , with 10 points per
decade, each measured for 1 period. The
measurement process lasted 96 minutes, with
inter-frequency breaks. The impedance
profile exhibits a semicircle between 3Hz
and 5KHz and constant-phase capacitance
properties below 3Hz, as anticipated [21].

40
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Figure 2: The initial EIS measurement curve is indicated by
the black X.

4044  Automotive Science and Engineering (ASE)
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4.2. Impedance evaluation using DRBS
excitation and Morlet wavelet transform

wz t2

Poo() = m7i(eSO —e ez (4

1 ((u—(uo)z

Pyo(t) =mse” 2 (1—e7%) (5

By utilizing a recent dataset [21], impedance
evaluation was conducted through discrete
random binary sequence excitation to
generate the Nyquist characteristic. The
Morlet wavelet transform was employed to
process the voltage and current signals, and
the obtained data was compared with the
reference values in FIGURE 3. Equations (4)
and (5) were utilized to derive the Morlet
wavelet and its Fourier transform.

where «0 is the central frequency. To
achieve a high level of focus in both the time
and frequency domains, one can turn to the
Morlet wavelet, which is a wavelet transform
specifically designed for this purpose. This is
accomplished by optimizing its properties to
minimize the area of the Heisenberg box,

2T .
5 While the

Morlet wavelet is widely used in signal
analysis due to its.

which is equal to AA,=

X Initial
—— Mean value of Zoggs_[Morlet]

0 0 2 30 10 50
R(Z)m0)

Figure 3: The comparison between the EIS measurement
curve with the value evaluated using DRBS excitation and
Morlet wavelet transform is shown.

strong properties, it also has some drawbacks.
One of these is that it relies on a single
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parameter w,, which can limit its flexibility.
Additionally, there are restrictions on the
analytical choices of this parameter when it is
less than w, < 5571 [28].

4.3. Impedance evaluation using DRBS
excitation and Morse wavelet
transformation

The evaluation of impedance was carried out
using the most recent datasets [21], where
DRBS excitation was utilized to derive the
Nyquist characteristic. Morse wavelet
transformation was applied to the voltage and
current signals to accomplish this.

FIGURE 4 shows the comparison between
data using Morse wavelet transform and
reference values. The Morse wavelet in the
frequency domain is defined by equation (6)
[28]:

Y(w) = U(a))Ka_ﬁwﬁe“"a ©

When computing the normalizing coefficient
Ko 5 in wavelet transforms, it is common to
use the Heaviside unit step function, which is
represented as U(w) . However, Morse
wavelet equation (7) is used for efficient
computation of the normalizing coefficient
during analysis [25]:

—w® 110g%8
w +q(logw+alogq)

Y(w) = U(w)e (7

X Initial
Mean value of Zpsas_[Morse]

20 30
R(2)mQ)
Figure 4: The comparison between the initial EIS
measurement curve with the value evaluated using DRBS
excitation and Morse wavelet transformation is shown.
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where the parameter e represents Euler's

number and g with the central frequency w0

q@/®
as w0 = p—

4.4. Impedance evaluation using DRBS
excitation and lognormal  wavelet
transformation

Impedance was evaluated using the recent
dataset [21], with DRBS excitation and
lognormal wavelet transformation of voltage
and current signals to obtain the Nyquist
characteristicc. FIGURE 5 shows the
comparison between the data using the
lognormal wavelet transformation and the
reference values. The lognormal wavelet can
outperform the Morlet wavelet in certain
conditions, providing better time-frequency
resolution due to its logarithmic frequency
resolution. The lognormal wavelet is defined

by (8) [25]:

- (2nfglogé)?
Y(E>0)~e" g , wy =1 (8

In the wavelet transformation, the resolution
of f, parameter is akin to the Gaussian
window, which is responsible for controlling
the time and frequency resolution of the
resulting output. The lognormal wavelet
usually exhibits slightly superior resolution
properties compared to the Morlet wavelet,
making it "infinitely admissible.” This means
that all moments of the wavelet, including

[ &P (§)dE/E (n = 0), are finite unlike
the Morlet wavelet [25].

The wavelet transform of a component
enables direct reconstruction of its amplitude
and phase derivatives. This feature is possible
due to the analytical tractability of the
wavelet, which provides explicit access to
Cy and other relevant quantities [25].

Like the central frequency of the Morlet
wavelet, the parameter w0 also serves as the

Automotive Science and Engineering (ASE) 4045
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central frequency in the wavelet transform .
The lognormal wavelet can also achieve a
computationally efficient implementation of
the continuous wavelet transform through the
use of frequency domain convolution using
the fast Fourier transform, which is similar to
the process utilized by the Morlet wavelet.
The lognormal wavelet gradually improves in
time-frequency  resolution vy, , and
outperforms the Morse wavelet ater > 0.1.
It also has many other advantages, so it is a
preferable choice among those listed in
TABLE 1 [25].

Tablel: Types of wavelets and their
characteristics (if known analytically)

Name Description and characteristics

_(@nfolog)?

P =e" =, ¢e(0,0)

1

Ry (@) = = [erf((ano)‘llogw)

V2
+ 1]: $12(6)

_ ng(€)
=explE 2nfy

2

Lognormal

]

()
_ e—(€—2ﬂfo)2(1 _ e—ZTIfof)'Ee'(O' OO)

Y(©)

1 .
— e—tz/ZeLZTEfot

V2m
_@nfo)?

+ O(e 2 ),te(—m, )

Morlet

(2nf)?

Wy = 27rf0+0(e_ 2 ),DIIJ =00
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q =30fy/a

(&) = BETe=t"

_ e_§a+qlog§+log3, 4 €(0,0),B
= (ea/q)1/®

B
Dy = “L21((q - D/a)(= o for q
<1)

Generalized
Morse family

W = 1/a = E
p = @/)Y9,C) = —T(a/a)

The resolution parameter f0 for each wavelet
is set so that at f0 = 1 they all have the same
frequency resolution [25].

40t

1.0 Hz

M2)ma)

Figure 5: The comparison between the initial EIS
measurement curve with the value evaluated using DRBS
excitation and lognormal wavelet transformation is shown.

5. Comparison of mother wavelets

FIGURE 6 displays three curves on a single
page to compare the performance of the three
methods. To provide a more detailed
analysis, we have magnified the areas with
noticeable differences and presented them in
FIGURES 7 and 8. As can be clearly seen in
FIGURES 7 and 8, the lognormal wavelet
performs better than the other two wavelet
types in most points. Also, Morlet wavelets
lose their analytical properties at low
frequencies. To obtain accurate impedance
measurements, it is essential to consider
time-frequency resolution, and as such, the
use of lognormal wavelets is advised.
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Figure 6: The comparison between the initial EIS
measurement curve with the value evaluated using DRBS
excitation and Morlet, Morse, and lognormal wavelet
transformation is shown.

34 36 38 40” a2 4% 46
R)mO]

Figure 7: Magnified figure of the comparison between the
initial EIS measurement curve with the value evaluated
using DRBS excitation and Morlet, Morse, and lognormal
wavelet transformation is shown.

[Morlet]
[Morse]
_[Lognormal]

=32ma)
X:
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Figure 8: Magnified figure of the comparison between the
initial EIS measurement curve with the value evaluated
using DRBS excitation and Morlet, Morse, and lognormal
wavelet transformation is shown.
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6. Description of the dynamic time
warping (DTW) algorithm

If two time series Q(t), P(t) with length M,
N are assumed, we have:

Q)= ql1,q2,...,qM

P(t) =pl,p2,...,pN ©

To make the above signals correspond, DTW
uses a matrix with dimensions of the length
of two signals, whose matrix elements
include the distance Dist(i, j) between two
points of the two signals. The distance
criterion is usually defined as the distance
between two signals based on DTW,
Dist(i,j) = (pi — gj)?, although any other
criterion can also be defined.

By defining the cumulative distance D(i, j),
the elements of the correspondence matrix
are:

D(I-1,))
D(i,j)= Dist(i,j) + min{D(i—1,j—1) (10
D@,j—1)

the above equation shows that the twist path
is calculated inversely and from the element
(N, M) of the matrix. In each step, by finding
the lowest value in all three paths, the
correspondences are determined until finally
it ends in the first layer of the matrix.

To calculate the distance between two
samples of two signals, we calculate the
distance based on DTW of two samples
(Euclidean distance) with equation (13) as
follows [31]:

d(x,y) = |x - yl (11

It is also possible to calculate the distance
between two signals based on DTW (squared
Euclidean distance) with the following
equation instead of (13) [32]:

Automotive Science and Engineering (ASE) 4047
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d?(x,y) = |x - y|? (12

in this paper, equation (13), distance based on
DTW, d(x,y) = |x — y| is used.

7. Comparison of mother wavelets using
dynamic time Warping algorithm

DTW (dynamic time warping) is an
algorithm for measuring the similarity
between two time series (signals) that may
differ in speed or time. DTW is one of the
powerful tools which employed in the fields
of classification, data mining and regional
matching of two signals. DTW can find the
corresponding  points based on the
optimization of the distances between the
points of two signals and by expanding and
contracting the time axis at each point.

Table2: Comparison of mother wavelets using
DTW

Distance calculated

Mother wavelet from DTW
algorithm
Morlet 3.5504
Morse 3.5457
Lognormal 3.4086

Comparing the DTW distance between the
reference and several different wavelets,
TABLE 2 reveals that the lognormal mother
wavelet has the smallest difference. This
finding suggests that the lognormal wavelet
is the most accurate choice for impedance
evaluation.

8. Conclusion

The paper shows that using DRBS excitation
with a lognormal wavelet for broadband EIS
is a better procedure than the conventional

4048  Automotive Science and Engineering (ASE)

approach wusing sinusoidal signals. This
approach enables faster measurements and
improved accuracy, as well as the ability to
evaluate impedance at any frequency point
using broadband excitation. Utilizing a
lognormal wavelet to generate broadband
excitation in system analysis enables the
examination of a broad range of frequencies,
providing a comprehensive understanding of
the behavior of the system under study.
Overall, this approach represents an
important advance in the field of EIS,
enabling researchers to perform more
accurate and comprehensive analyses in less
time. Using a tool that quickly and accurately
measures impedance at low frequencies can
help estimate battery health. These benefits
demonstrate the usefulness of EIS based on
continuous wavelet transform with a
lognormal mother wavelet.
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