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Abstract

This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data

is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed

on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the

results of this study are compared with the auto regressive (AR) method. The least root mean square error (RMSE) and

median absolute percentage error (MDAPE) are utilized as two criteria for evaluation of predictions accuracy. The

results demonstrate the effectiveness of the proposed approach for prediction of driving data time series.
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1. INTRODUCTION

Hybrid vehicles are vehicles equipped with at least
two different sources of energy. In the specific case of
Hybrid Electric Vehicles (HEVs), one of the power
sources is electrical. The architecture of a HEV
includes an Internal Combustion Engine (ICE) with an
associated fuel tank and an electric machine with its
associated energy storage system (i.e. battery). Using
this architecture, HEVs combine the benefits of ICE
and electric motors to obtain different objectives such
as improved fuel economy or additional auxiliary
power for electronic devices and power tools.

In order to use the two power sources of HEV in an
effective manner, a control strategy is necessary.
Because of the influence of traffic conditions on the
HEV power management system, applying an
adaptive control strategy is essential. This approach
suggests that a HEV requires high ability to adapt
itself to traffic conditions to minimize fuel
consumption and exhaust emissions. In fact, HEV is
more sensitive to traffic conditions than a
conventional vehicle. Thus, the use of traffic
information in the adaptive HEV power management
system has become one of the most important
applications in the area of driving patterns and traffic
condition analysis which has attracted a lot of interest
recently among the researchers [1] to [8].

Driving condition prediction is a computational
algorithm used in the HEV control unit in order to
predict the driving data for the near future. One

mechanism for having information about the short-
term traffic flow is vehicle telematics [9] used in
intelligent  transportation systems (ITS). The
navigation system and ITS can provide traffic
information such as congested routes and arrival time
for the driver in order to choose the best route.
Although vehicle telematic systems have many
advantages, they suffer from some limitations
including equipments needed as infrastructure. In
addition, the traffic information must be updated in
very short time intervals for HEV application.
Moreover, taking into account the target of this study
which is the use of driving data in intelligent HEV
control, it is essential for the telematic system to cover
all regions where vehicle moves. However, the
infrastructure required for a telematic system is not
provided in many cities or regions. As a result, other
approaches based on the analysis of the history of
vehicle’s motion may be applicable for HEV control.
One of these approaches is velocity time series
forecasting.

Albeit time series forecasting has been studied in
previous studies in many areas such as market
forecasting and climate prediction, only few studies
have been undertaken for prediction of driving data
time series [10] to [12]. In [12], short-term “traffic
flow” prediction is studied to predict the traffic
volume during daytime hours on an expressway for
the next 15-minute interval using neural networks. In
that study, three fixed points on a single expressway
are considered during daytime hours on weekdays in
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order to measure and store traffic flow. These studies
are not applicable for HEV control because traffic
flow is predicted in a place instead of velocity time
series of a moving vehicle.

In this paper, velocity time series prediction is
presented based on the history of vehicle’s motion
using neural networks. For this purpose, driving data
is firstly collected using Advance Vehicle Location
(AVL) systems and therefore real driving time series
are used for the investigations. Multi-layer perceptron
(MLP) networks are then designed for driving data
prediction where two separate parts of driving data are
used for training and testing of the neural networks.
Taking the application of this study in intelligent HEV
control into account, prediction horizon is considered
10 seconds ahead in velocity time series. Finally, the
least root mean square error (RMSE) and median
absolute percentage error (MDAPE) are utilized as
two criteria for evaluation of predictions accuracy. In
addition, the neural networks are compared with Auto
Regressive (AR) method as a reference for the
prediction results.

The structure of the paper is as follows. In section
2, intelligent control strategy for HEV based on
driving condition prediction is introduced. Section 3
explains driving data gathering. In section 4, neural
network is described. The vehicle’s velocity time
series prediction is presented in section 5. Finally in
section 6, the results are analysed.

2. DRIVING CONDITION PREDICTION FOR
HEV CONTROL

As mentioned in the introduction section, HEVs are
able to apply the driving condition information in
order to improve vehicle's performance. A driving
cycle can be represented as a sequence of traffic
conditions. It is believed that by analyzing the driving
data, useful information is provided to predict the
traffic conditions. By recognition and prediction of
traffic conditions, fuel-consumption and emissions
reduction may be possible using an intelligent control
algorithm in HEVs [7] and [8]. Figure 1 shows a
schematic representation of driving condition
prediction system. As presented in the figure, the
predictor part predicts velocity time series in
prediction horizon based on history of vehicle’s
motion.

Figure 2 illustrates a schematic of adaptive HEV
control based on driving time series prediction. In this
approach, the prediction horizon is 10 seconds and
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Fig. 1. Schematic of a driving pattern prediction system
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Fig. 2. schematic of an adaptive HEV control based on driving time series prediction
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prediction is repeated after 10 seconds using an on-
line approach. The last driving data is used as inputs of
neural networks. Then velocity time series is predicted
from 1 second to 10 second ahead. The control unit
has an off-line database containing many 10-sec
segments and corresponding optimized controllers of
that segments. After prediction in each step, the most
similar 10-sec driving segment in the database to the
predicted segment is selected, and its controller is used
for the next 10 second. This process is repeated each
10 seconds during motion.

3. DRIVING DATA

In this study, driving data are collected in the real
world traffic condition in order to provide a real
database including the vehicle’s velocity. For this
purpose, data gathering has been performed in the city
of Tehran using Advance Vehicle Location (AVL)
systems installed on private cars. The AVL system,
depicted in Figure 3, operates on the basis of Global
Positioning System (GPS) which is a satellite-based
navigation system. The X8 model AVL system has
been used in this study. The data which is recorded
every second includes some information such as
date/time, number of the satellites, longitude, latitude,
speed and altitude of the vehicle.

Fig. 3. The X8 AVL system
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Fig. 4. A perceptron neuron with hard-limit function

4. NEURAL NETWORKS

In this study, neural networks have been used for
driving time series prediction. The process of driving
time series prediction and the results are discussed in
the following parts. In this section, a brief explanation
about the structure of neural networks used in this
study is presented. Multi-layer perceptron (MLP)
networks have been utilized in this work for driving
time series prediction. Rosenblatt [13] created many
variations of the perceptron. One of the simplest was a
single-layer network whose weights and biases could
be trained to produce a correct target vector when
presented with the corresponding input vector. In this
study, separate parts of driving data are used for
training and testing neural networks. The discussion of
the perceptrons in this paper is brief and for a more
thorough discussion see references [13],[14]. A
perceptron neuron, which uses the hard-limit transfer
function, is shown in Figure 4 and a perceptron
network consists of a single layer of S perceptron
neurons connected to R inputs is demonstrated in
Figure 5.

The training algorithm of MLP is called back
propagation method. In the back propagation learning
method, a network learns a predefined set of input-
output example pairs by using a two-phase propagate-
adapt cycle. After an input pattern has been applied to
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Fig. 5. A perceptron network consists of a single layer of S
perceptron neurons connected to R inputs
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the first layer of network units, it is propagated
through each upper layer until an output is generated.
This output pattern is then compared to the desired
output and an error signal is computed for each output
unit. The error signals are then transmitted backward
from the output layer to each node in the intermediate
layer that contributes directly to the output. However,
each unit in the intermediate layer receives only a
portion of the total error signal, based roughly on the
relative contribution the unit made to the original
output. This process repeats, layer by layer, until each
node in the network has received an error signal that
describes its relative contribution to the total error.
Based on the error signal received, connection weights
are then updated by each unit to cause the network to
converge toward a state that allows all the training
patterns to be encoded [15].

5. VELOCITY TIME SERIES PREDICTION

In this section, ability of MLP networks to predict
the velocity time series in the near future is
investigated. In this case, the inputs of the network are
velocity values in the past seconds (V;,V, 15V, 55--V,,)
and the outputs are velocity values in next seconds
(Vi+1>V142-V143>-+-). Separate networks have been
designed for each output. The number of inputs for
each network is determined by trial and error based on
the accuracy of the predictions of testing data. The
least root mean square error (RMSE) and median
absolute percentage error (MDAPE) are utilized as
two criteria of prediction accuracy as follows:
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Fig. 6. Actual and predicted values of velocity in 1 second
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Fig. 8. Actual and predicted values of velocity in 10
seconds ahead using NN method

Table 1. structure of the best designed neural networks

Number of Neural network Neural network
seconds ahead (RMSE criterion) (MDAPE criterion)
1 5-4- 8-3-1
2 3-8- 5-9-1
3 6-7- 3-1-1
4 2-10 - 3-5-1
5 3-4 3-1-1
6 6-10 4-2-1
7 3-3 5-4-1
8 9-10 - 2-3-1
9 7-5 7-9-1
10 5-3 9-4-1
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Fig. 9. three sample 10-sec segments predicted using
neural networks

RMSE= (Y elk)'* <53 0-a)) ()
MDAPE =Median ( % x100) )

where t(k) and a(k) are the target and predicted
values of the velocity respectively and Q is the number
of testing data points.

The results demonstrate that increasing the number of
inputs of networks does not essentially lead to an
improvement in prediction errors. This is because of the
short-term characteristics of the traffic data. Indeed, these
kinds of systems do not have a long memory against the
dynamic systems. The number of neurons of the networks
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Fig. 10. RMS error of NN and AR for different prediction
horizons

is selected sufficiently high in all cases. Increasing the
number of neurons may be useful until a limit and after
that we only increase the training time but the testing error
remains almost constant.

The best configurations of MLP networks using
different number of inputs and different number of
neurons are presented in table 1 based on RMSE and
MDAPE prediction errors. In the first row of the table,
5-4-1 means 5 inputs, 4 neurons in the hidden layer of
network and 1 output. In other words, the 5-4-1 structure
leads to the best prediction results for one second ahead
based on RMSE criterion. Similarly, the 8-3-1 structure
leads to the best prediction results for one second ahead
based on MDAPE criterion and so on.

Figures 6 to 8 present the real and predicted values
of the vehicle’s velocity time series of the testing data
in 1, 5 and 10 seconds ahead respectively using the
best designed neural networks. As expected,
increasing the prediction horizon leads to decrease in
prediction accuracy. Prediction precision s
investigated in next section based on least root mean
square error (RMSE) and median absolute percentage
error (MDAPE).

Figure 9 presents three sample 10-sec segments
predicted using the designed neural networks. The
figure demonstrate that although the two real and
predicted driving segments are not the same exactly,
the predicted segment get us an estimation about the
next segment.
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Fig. 11. MDAP error of NN and AR for different prediction
horizons
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For using in intelligent HEV control unit, after the
prediction process a similarity search is performed in
order to find the most similar driving segment in the
database to the predicted one. By this way the
accuracy of the predictions is improved. In other
words, the controller parameters are optimized for a
lot of different 10-sec driving segments in off-line
condition and then the database is utilized in on-line
applications. The similarity search means finding the
most similar segments to the predicted segment in the
database. After the similarity search, the optimized
controller parameters of the estimated segment
(funded segment in database) are used for the real
segment. Although the off-line optimized parameters
are not optimized for the real segment, the controller
works as a semi-optimized controller.

All of the computations including the prediction
and the similarity search and tuning of the HEV
controller parameters are done during a time less than
one second. The controller is used for 10 seconds
ahead and prediction, similarity search and tuning are
repeated each 10 seconds.

6. RESULT ANALYSIS

In this section, the neural networks prediction
results are evaluated by a standard time series
forecasting approach called Auto Regressive (AR)
[16] and [17]. Table 2 presents the comparative results
of AR and NN methods based on RMSE and MDAPE
criteria. The results demonstrate that neural network
act more perfectly than the AR models for different
prediction horizons and also for the both error criteria.
The errors are also presented in Figure 10 and Figure
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Fig. 12. Actual and predicted values of velocity in 1
second ahead using AR and NN methods
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Fig. 13. Actual and predicted values of velocity in 5
seconds ahead using AR and NN methods

11. The errors increase directly by the prediction
horizon. NN act better than AR models based on both
errors especially based on MDAPE.

The actual and predicted values of three samples of
time series for 1, 5 and 10 seconds ahead are also
presented in Figure 12 to Figure 14 respectively. As
seen in the figures, the difference between actual
values and prediction results increases directly by
length of prediction horizon. In addition, difference
between predicted time series using AR and NN
methods is negligible for one second ahead but for

Table 2. Comparison of AR and NN methods according to RMSE and MDAPE criteria

Prediction RMSE MDAPE

horizon (sec) AR NN AR NN
1 1.78 1.52 2.02 1.7
2 5.43 2.97 6.32 3.02
3 8.76 3.24 6.96 3.14
4 10.28 6.04 11.03 5.71
5 9.62 8.28 13.45 7.05
6 15.38 9.64 17.56 9.34
7 15.08 11.16 18.2 10.18
8 17.36 12.26 20.23 12.45
9 14.44 12.75 26.61 11.1
10 17.22 12.87 18.48 11.88

International Journal of Automotive Engineering

Vol. 1, Number 1, January 2011


https://std.iust.ac.ir/ijae/article-1-8-en.html

[ Downloaded from std.iust.ac.ir on 2025-11-06 ]

A. Fotouhi, M. Montazeri-Gh and M. Jannatipour

27

— actual data
.......... MM prediction
AR prediction

welocity (km/h)

tirme (sec)

Fig. 14. Actual and predicted values of velocity in 10
seconds ahead using AR and NN methods

longer prediction horizons the neural networks predict
better than AR models which is in agree with the
previous results.

7. CONCLUSION

In this paper, application of neural networks for
prediction of driving data time series is presented. The
results demonstrate that neural networks perform
efficiently as a prediction method comparing to other
methods such as AR. In addition, the effect of
prediction horizon on the performance of predictors is
studied. Two criteria of prediction accuracy are used
including the least root mean square error (RMSE)
and median absolute percentage error (MDAPE).
According to the results, the predictors can be used as
a subsystem in HEV control unit in order to improve
fuel economy and exhaust emission.
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